Automating Cloud Deployment for Deep Learning
Inference of Real-time Online Services

Yang Lil'2*, Zhenhua Han?3*, Quanlu ZhangQ, Zhenhua Li'&, Haisheng Tan*
1School of Software, BNRist, and KLISS MoE, Tsinghua University, China
2System Research Group, Microsoft Research Asia, China
3Department of Computer Science, University of Hong Kong, China
4School of Computer Science and Technology, University of Science and Technology of China
{liyang14thu, hzhua201, lizhenhual983, karl.haisheng.tan} @ gmail.com, Quanlu.Zhang@microsoft.com

Abstract—Real-time online services using pre-trained deep
neural network (DNN) models, e.g., Siri and Instagram, require
low-latency and cost-efficiency for quality-of-service and commer-
cial competitiveness. When deployed in a cloud environment, such
services call for an appropriate selection of cloud configurations
(i.e., specific types of VM instances), as well as a considerate
device placement plan that places the operations of a DNN
model to multiple computation devices like GPUs and CPUs.
Currently, the deployment mainly relies on service providers’
manual efforts, which is not only onerous but also far from
satisfactory oftentimes (for a same service, a poor deployment
can incur significantly more costs by tens of times). In this paper,
we attempt to automate the cloud deployment for real-time online
DNN inference with minimum costs under the constraint of ac-
ceptably low latency. This attempt is enabled by jointly leveraging
the Bayesian Optimization and Deep Reinforcement Learning
to adaptively unearth the (nearly) optimal cloud configuration
and device placement with limited search time. We implement
a prototype system of our solution based on TensorFlow and
conduct extensive experiments on top of Microsoft Azure. The
results show that our solution essentially outperforms the non-
trivial baselines in terms of inference speed and cost-efficiency.

Index Terms—automating, cloud configuration, deep learning
inference, real-time services

I. INTRODUCTION

Deep learning is currently the de facto standard technique
used in various areas, such as computer vision [1], [2], speech
recognition [3]-[6], and natural language processing [7]-[10].
In recent years, deep neural network (DNN) models have
become crucial back-end support of many real-time online
services [11], [12], such as Siri and Instagram. As the ac-
curacy is ensured by the DNN model, the performance of
a real-time online service mainly depends on the response
time for handling user requests, which includes the network
transmission time, task scheduling time, inference time (i.e.,
the execution time of the DNN inference), and so forth. In the
response time, inference time usually occupies the dominant
portion [13], especially for a complicated DNN model. Hence,
we take inference time as the major constraint of quality-of-
service (QoS) in DNN-driven real-time online services.

Due to the economies of scale and elasticity of cloud com-
puting, many real-time online services choose to deploy their
pre-trained DNN models in public clouds (e.g., Amazon Web

* Co-primary authors. Zhenhua Li is the corresponding author.

Services, Microsoft Azure, and Google Cloud) and provide
the corresponding inferences to users. A public cloud typically
offers a variety of (e.g., over a hundred) cloud configurations
(i.e., specific types of VM instances with different hardware
and OSes) to its customers, which are specialized to support
machine learning jobs. At the moment, (DNN-driven real-
time online) service providers usually artificially select their
cloud configuration. Among the numerous available cloud
configurations, it is not easy for them to find the best cloud
configuration [14], and thus their selected VM instances are
often either over-configured that lead to a waste of money or
under-configured that slow down the inference speed.

Besides searching for an appropriate cloud configuration,
service providers need to consider computation parallelism in
the meantime. Specifically, they should explicitly place the op-
erations of a neural network on multiple computation devices
like GPUs and CPUs to accelerate the DNN inference [15],
[16]. Consequently, a considerate device placement plan is
also called for, and in practice it is also usually artificially
designed by service providers at present. Once again, it is
hard for them to make an optimal or near-optimal device
placement plan, especially when the DNN model has a large
computation graph [15] (which contains a set of operations
with inter-operation dependencies).

Given the computation graph of a DNN model, finding the
optimal cloud configuration and device placement is highly
challenging, because it involves a huge search space — the joint
space of all available cloud configurations and all possible
device placement plans. Therefore, we pose a critical ques-
tion for today’s DNN-driven real-time online services: how
can we automatically determine the cloud configuration and
device placement for the inference of a DNN model, so as
to minimize the inference cost while satisfying the inference
time constraint? Here inference cost is defined as the product
of inference time (in the unit of second per request) and the
price of the cloud configuration (in the unit of dollar per hour).

In this paper, we answer the above question with our
proposed solution, named AutoDeep. Given a DNN model
and the inference time constraint (which should be acceptably
low), AutoDeep attempts to compute the cloud deployment
with the lowest inference cost. We formulate the attempt as a
two-fold joint optimization of cloud configuration and device

placement. In order to enable the attempt, AutoDeep leverages
Bayesian Optimization (BO) for unearthing the (nearly) best
cloud configuration within limited search time, and meanwhile
utilizes Deep Reinforcement Learning (DRL) for making
the (nearly) optimal device placement plan. In detail, Au-
toDeep employs BO to judge which cloud configuration should
be sampled next to best reduce the inference cost; as for
each sampled cloud configuration, AutoDeep iteratively trains
a DRL model to make the optimal device placement plan. In
a nutshell, AutoDeep strategically learns the characteristics of
a DNN model and the available cloud configurations to figure
out a cost-efficient cloud configuration and device placement
plan under the inference time constraint.

We implement AutoDeep based on TensorFlow [17] and
build the prototype system on top of VM instances rented
from Microsoft Azure. We evaluate the effectiveness of Au-
toDeep through extensive experiments using typical workloads
for natural language processing (i.e., RNNLM [18]) and online
image classification (i.e., Inception-V3 [19]). The experiment
results show that AutoDeep improves the inference speed by
43% for RNNLM and 14% for Inception-V3, compared with
the non-trivial baselines such as Google’s RL-based device
placement [15]. Moreover, AutoDeep essentially reduces 23%
of the inference cost and 33% of the search time for RNNLM,
and saves 51% of the inference cost and 57% of the search
time for Inception-V3, compared with the heuristic baselines
such as greedy search.

Roadmap. The remainder of the paper is organized as
follows. In Section IIlI, we present the system model and
formulate the problem. In Section IV, we present our algo-
rithm AutoDeep. In Section V, we demonstrate the prototype
setting and the experiments results. We survey the related
works in Section VI and conclude this paper in Section VIIL.

II. MOTIVATION

In this section, we show the problem and challenges of
automating the cloud deployment for deep learning inference
of real-time online services. We also explain why existing
solutions do not solve the problem.

A. Problem

An appropriate cloud configuration is crucial to the infer-
ence performance and the operation cost of online services.
Different from training a DNN model, the inference of a
DNN model usually supports the online services that run
over months or even years. Table I shows the minimum and
maximum cost of 10000 times inference for 5 popular DNN
models across all cloud configurations in a cloud provider. We
observe a poor cloud configuration can incur up to 16 times
cost compared to the best one.

Online services have the trade-off between operation cost
and performance. Simply using the cheapest or the most
expensive cloud configuration can hardly achieve the optimal
trade-off. Thus, it is important to find a cost-efficient config-
uration (and device placement) within a QoS constraint.

TABLE I
INFERENCE COST (10000 TIMES) OF DIFFERENT MODELS ACROSS
DIFFERENT CLOUD CONFIGURATIONS

Model Min Inference Cost Max Inference Cost
RNNLM $0.17 $1.15
Inception-V3 $0.40 $6.39
VGG16 $0.58 $7.26
ResNet-50 $0.60 $4.74
AlexNet $0.59 $4.45

B. Challenges

There are two challenges for picking the cost-efficient cloud
configuration and the optimal device placement plan.

Huge search space: Finding the cost-efficient cloud configu-
ration and the optimal device placement involves a huge search
space. Firstly, cloud service providers usually have many VM
instance types that require users to decide which ones to use.
For example, both AWS and Microsoft Azure provide over
100 types of cloud configurations. Secondly, even with a fixed
cloud configuration, there still exist a large amount of different
device placement plans. A DNN model can have hundreds to
thousands of operations. Each operation can be placed on a list
of feasible devices (e.g., CPUs or GPUs). Therefore, the space
of feasible device placement plans grows exponentially with
the number of operations. The search space further expands
with the joint of cloud configuration and the device placement.

Complex performance model: = The VM instance types
offered by the cloud service providers have heterogeneous
configurations on the number of CPU cores, the RAM size,
the type of GPUs, the number of GPUs, etc. The cloud charges
users with the amount of running time of the VMs, which is
independent with the job performance running inside the VMs.
It relies on users to pick the suitable cloud configuration for
their workloads.

However, the performance of a DNN model is very com-
plicated [20]. It is hard for users to predict the inference
performance over different cloud configurations. Especially,
different cloud configurations may need different device place-
ment plans for the best performance. The typical practice is
to heuristically place some code-level operators on a given
device (e.g., a GPU) based on the domain expertise. But
such decisions can be challenging for dynamic DNN with
multiple branches, due to the unclarity and variation of the
hardware performance [21]. Existing algorithmic solvers for
graph partition, such as Scotch [22] and Metis [23], do not
work for this problem, because these algorithms need accurate
cost models, which is almost impossible for the complex DNN
models.

C. Black-box Optimization for Combinatorial Problem

The huge search space and the complex performance of
DNN models motivate us to adopt black-box optimization
techniques. Black-box optimization algorithms aim to optimize

an objective function f(z) with or without constraints through
a “black-box” interface: the algorithm can query the value of
f(x) at the point x without knowing any other information
(e.g., gradient) and assuming any forms of f(x) (e.g., being
linear or convex). The goal is to find a value of f(x) as good
as possible within the limited time.

The black-box optimization is naturally suitable for solving
the joint optimization of cloud configuration and device place-
ment for DNN models. Due to the complexity of DNN model’s
performance, the inference time of a given device placement
plan under a fixed cloud configuration can be regarded as
a black-box function. An input of the black-box function is
the combination of a cloud configuration associated with a
device placement plan. The goal of the black-box optimization
is to find the minimum inference cost with a given QoS
requirement.

Black-box optimization techniques, such as Bayesian Op-
timization (BO), have been proved to be effective when the
search space is small [14]. However, they cannot be simply
applied to solve the combinatorial device placement problem
due to the extremely large and exponentially growing search
space. Thus, we seek to the Deep Reinforcement Learning
(DRL), which has been proved to be effective for solving
the large-scale combinatorial optimization problem [24] with
a black-box objective function, which adopts deep neural
network to exploit the problem structure.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we introduce the system models used in this
work and formally define the problem of joint optimization of
cloud configuration and device placement.

A. Cloud Configuration

We consider a cloud service provider that offers the GPU
servers in the form of various cloud configurations. A cloud
configuration is a combination of the computing resources,
typically CPUs and GPUs. For example, Microsoft Azure
provides NC24 configuration with 24 CPU cores and four
NVIDIA K80 GPUs with the price of $3.60 per hour. Users
can choose among the configurations to run their DNN infer-
ence jobs on the clouds.

Suppose there are K types of cloud configurations in
total. The k-th cloud configuration is represented by a set
of computing devices Dy = {dp1,dy>2,...,dy|p, }. Each
device dj,; can be a CPU core or a GPU device. We assume
the memory and disk space in all cloud configurations are
sufficient enough, so we do not consider memory and disk
space in the rest of the paper.

We assume the CPUs in different configurations have the
same computing capability!. The price of the k-th cloud
configuration is my (in the unit of dollar per hour).

'Nowadays, the CPUs in the cloud datacenter are usually customized. The
cloud service provider guarantees that the CPUs in different configurations
have similar performance. Thus only the number of CPU cores matters in
different configurations.

P e SO e S e SOt S =
LSTM &}—'i}—-i}—-i}—v —-i}—'i}—'&]—-f__'_l
Embedding i] i] i] i] i] i] &] i]

Time Steps

3

Y

Fig. 1. The computation graph of RNNLM.

D Convolution = AvgPool @ MaxPool @ Concat

= Dropout = Softmax

= Fully Connected

Fig. 2. The computation graph of Inception-V3.

B. Computation Graph and Device Placement

The prevalent machine learning frameworks usually ab-
stract the computation of a DNN inference as a computation
graph (e.g., TensorFlow [17]). Fig. 1 and Fig. 2 demon-
strate the computation graphs of two popular DNN models,
RNNLM [18] and Inception-V3 [19] respectively. The former
is designed for natural language processing and the latter
is designed for image classification. Denote the computation
graph of a DNN inference job as G. The computation graph
G consists of n, operations (denoted as O = {01, 02, ...0, }).
There is a set of directed edges in G. Each edge connects two
operations that represent the dependency relationship of these
two operations. If a directed edge connects o; and o;, then
the operation o; can only be started after the finish of the
operation o;.

To execute a DNN inference job, each operation in its
computation graph should be placed on a computing device,
e.g., a CPU core or a GPU. We define a device placement
P = (p1,p2,..-pn,) as a mapping from O to Dy, where p;
is the device the operation o; placed on. Some operations
have the requirement of the placed device, e.g., the input
data reading operation should only be placed on a CPU. We
denote the device requirement of the operation o; in the k-th
configuration as JF;(Dy), i.e., any feasible device placement
should satisfy p; € JF;(Dy,). Due to the heterogeneity of GPUs,
different placements will result in different computation time
of the graph G. We denote the computation time of the graph G
under the cloud configuration D}, using the device placement
P as T(G,P, Dy). Since the graph execution and environment
involve very complex trade-off between computation and
communication in the hardware, it is hard to define the graph

execution time in a close-form. Therefore, we assume the
inference time is a black-box function but can be profiled
accurately given the device placement and cloud configuration.

C. Problem Formulation

In this paper, we study automating the cloud deployment,
which is formulated as a joint optimization problem of cloud
configuration selection and device placement. We consider the
scenario that we are given a DNN computation graph G and a
QoS constraint, which is the inference time requirement. Our
goal is to find the cloud configuration and device placement
with the lowest cost that satisfies the QoS constraint. We
denote the inference time requirement as 7. Since simply
searching the cost-efficient cloud configuration in a brute-
force manner is too expensive, the problem should be solved
within a limited search time, which is denoted as M. Formally,
we formulate the optimization problem as follows (important
notations are summarized in Table II):

Minimize : Z g -my - T(G, P, D), (D
ke[K]
xr € {0,1},Vk € [K], (2a)
i € {0,1},Vk € [K], (2b)
pi € fi(Dk),Vi € [no], if 2 =1, (20)
Z Ik =1, (2d)
subject to : ke[K]
> & -T(G,P,Dy)<T, (2¢)
ke[K]
> ak- fulG) < M. (2f)
ke[K]

where zj indicates whether the k-th configuration is tried
during configuration searching, f(G) is the time spent on
finding the device placement of G using the k-th configuration,
2, indicates whether the k-th configuration is the final configu-
ration in the solution. Constraint (2c) guarantees the feasibility
of the final device placement. Constraint (2d) ensures there
is only one cloud configuration that is used in the final
solution. Constraint (2e) specifies the QoS constraint of the
final cloud configuration and the device placement. Constraint
(2f) limits the search time. The optimization objective in (1)
is to minimize the inference cost of the final solution. In the
following section, we design an efficient algorithm that will
iteratively find the cost-efficient cloud configuration and the
device placement, without assuming any knowledge of the
execution environment and the statistical information of the
DNN inference computation graph.

IV. AUTODEEP: UNEARTHING THE COST-EFFICIENT
CLOUD CONFIGURATION AND THE DEVICE PLACEMENT

In this section, we present AutoDeep that can iteratively
unearth the cost-efficient cloud deployment given a DNN

TABLE II
IMPORTANT NOTATIONS

K the number of cloud configurations
Dy, the computing devices in the k-th configuration
di,; the i-th computing device in Dy,
my the price of the k-th cloud configuration
g the computation graph of the DNN inference job
@ the operations in the computation graph G
0; the ¢-th operation in O
P the device placement plan
Fi(Dy) The device requirement of tl.le operation o;
in the k-th cloud configuration
T(G, P, Dy) the inference time of G under the device placement P
in the k-th cloud configuration
T the QoS constraint
the time spent on the k-th configuration
fx(9)

to find the device placement

inference computation graph and its QoS constraint. Our
objective is two-fold: optimizing the cloud configuration and
the device placement while using the least search time. We
start with a high-level overview of the proposed algorithm
AutoDeep, and then describe the details on how we choose the
cloud configuration and find the optimized device placement.

A. Overview of AutoDeep

Inference
@ Constrained Bayesian ~ Performance

Contguraion) | = Optimization 4@
Trial Conﬂgurationl@
RL-Based Device @ Execution
mmmp Enyironment
MConnghiation ey Placement Device
Configuration Pool AutoDeep Placement

Fig. 3. Architectural overview of the AutoDeep framework.

AutoDeep iteratively finds the cost-efficient cloud configu-
ration and the device placement. Fig. 3 illustrates the algorithm
framework of AutoDeep. In each iteration, AutoDeep first
decides the cloud configuration using a Bayesian Optimization
(BO) based approach. Then, AutoDeep will try to learn the
environment and optimize the device placement with a DRL
based method. After AutoDeep finds the device placement
that satisfies the QoS constraint or asserts that the QoS
constraint cannot be achieved under this cloud configuration,
AutoDeep will extract the underlying characteristics of the
inference job and the cloud configuration from existing obser-
vations and try a new cloud configuration in the next iteration.

B. Finding the Cost-Efficient Cloud Configuration

For a given DNN with specified QoS constraint, we pre-
pare a set of common GPU configurations and use Bayesian
Optimization to get the cost-efficient configuration via mul-
tiple iterations. Bayesian Optimization is a sequential design
strategy for global optimization of black-box functions that do
not require derivatives. To make the paper self-contained, we
briefly explain the basic concept of Bayesian Optimization.
Please refer to [25] for more details.

Bayesian Optimization has two essential components: 1) a
probabilistic model and 2) an acquisition function. In Bayesian
Optimization, Gaussian Process is the most commonly used
probabilistic model for building the model of the black-box
function. The probabilistic model can be used to estimate the
inference performance under different cloud configurations.
The acquisition function is usually used to predict the expected
information gain of each cloud configuration if it is selected
for the trial. Bayesian Optimization iteratively estimates the
objective function according to the observed samples. Then it
uses a pre-defined acquisition function to get the potential gain
of the rest candidate samples and choose the highest one as
the next sample. Since the conventional Bayesian Optimization
only optimizes the objective function without considering any
constraint, we use the constrained acquisition function [26] to
overcome this drawback.

To extract more information from the cloud configuration,
we replace Dy, with the detailed configuration of the comput-
ing devices (including the number of CPU cores, the CPU
clock speed, the number of CUDA cores, the GPU clock
speed, the GPU memory bandwidth and the number of GPUs
on the server). We aggregate these information into a vector
D;., which redefines the black-box inference time function
T(G,P,Dy) as T(G,P,Dy) (we use T(Dy) for ease of
elaboration when there is no ambiguity).

We begin with the expected improvement (EI) acquisition
function and show we extend it to the constrained EI acqui-
sition function. Let f)p;2 be a candidate cloud configuration
for next trial. Define T(f)k.) as Gaussian process posterior
estimation for 7 (Dy,). The improvement function is defined as

I(Dy,) = max{0,mxT(Di) — my- T(Dy-)}, (3)

where k£* is the cloud configuration with the minimum infer-
ence cost, i.e. k* = argminy, my, - 7 (Dy). Thus the expected
improvement acquisition function becomes

EI(Dy) = E[I(Dy)[Dy], 4)

which can be easily computed with the closed form derived
by Jones et al. [27].

To extend the acquisition function to cover the QoS require-
ment, we first define the constrained improvement acquisition
function as follows:

Ic(Dy) = A(Dy) max{0,my T(Dg) — my-T (Dg=)}, (5)

where A(Dy,) is an indicator function whose value is 1 if the
QoS constraint is satisfied (i.e., T(Dy) < 7), and 0 otherwise.

In fact, the quantity A(Dy) is a Bernoulli random variable
with the parameter:

(D) = Pr(Dy < Al
A
- / 5(T(Dw)|Dr, T(Dw))d T(Dy), (6)

where §(-) is the probability density function.
Finally, we obtain the expected constrained improvement
acquisition function as follows:

= I'(Dy) EI(Dy). (7)

In fact, the expected constrained improvement acquisition
function in eqn. (7) is the expected improvement of D;, over
the probability that Dy, satisfies the QoS constraint.

Although the goal of cloud configuration searching we
defined is to find the configuration with the lowest inference
cost while satisfying the QoS constraint, our approach can be
easily extended to other performance-related goals, such as
finding the configuration with lowest inference time within an
inference cost constraint. Because we have ’f(]ﬁ &) to estimate
the inference time of a DNN model under different cloud
configurations, we can design the improvement function and
the acquisition function to cover other performance-related
objectives and constraints. Thus, our approach is very general
for cloud configuration searching.

C. Finding the Device Placement

We design a model based on DRL to find the (nearly)
optimal device placement for the target graph in a speci-
fied configuration. In our problem, we should encode the
information of the target computation graph as our model’s
input. A natural idea is to input the information of all the
operations in the graph as a sequence of data to the model.
The output of the model can be constructed as a sequence of
devices corresponding to the input operators. The sequence-
to-sequence (Seq2Seq) model works well on the modeling of
sequence data, so we design a sequence-to-sequence model
as the agent in our DRL method. The agent places the next
operator one-by-one on an available device. Each time an
operator is placed, the system changed to a new state for the
output of the DRL model until all operators are placed. Then
we start to measure the inference time of this placement, which
is the reward for training the Seq2Seq model.

Under the cloud configuration Dy, we propose to train a
policy 7(P|G;) to minimize the objective:

J(0) = Erg,p,Dy)~m(PlG:0)[(P)IG]. (®)

The policy is defined by an attentional Seq2Seq model,
which is introduced in detail below. The parameters in the
network are learned by Adam optimizer [28] based on the

update—|

Optimizer

Environment

input vector of a
code-level operator

(e.g., Conv2d(2,2))

op-1

<—reward— withaGPU [+—executed in—— Sample Placements
configuration R
type embedding device _ device _ B device
forop-1 ™\ forop-2 "\ N, forop-n Softmax
output shape \ ' \
1 1 1
one-hot adjacency i i ! .
| | i Attention
| | |
I
I I I
I I I
| | |
1 1 i
‘\\\ bl ‘\\\' P \\\\ = LSTM
op-2 op-n start token Input

Y

Executed in TensorFlow (source-code-modified version)

f

DNN Inference Job

Fig. 4. Architecture of the device placement model.

REINFORCE equation [29], a commonly used policy gradient
method, which is given as follows:

VoJ(0) = Epr(p|g:0)[T (G, P, Di) « Vylogp(P|G;0)].

We estimate the gradient by drawing K samples from P; ~
7(.|G; 0). We reduce the variance of policy gradients by using
a baseline term B:

1 K
Vo (0) = 22 > _((Pi) = B) . Vylogp(P|G;6). ()
=1

We set B as our baseline experiments’ results. The reward
function (F;) is simply designed as the execution time of the
DNN under the placement P; in current configuration, which
works well in the training process. We also set a random
rate, which reduces with the increasing number of episodes,
to encourage our model to explore more placements.

We use a sequence-to-sequence model with LSTM [18] and
a content-based attention mechanism to predict the placements,
as shown in Fig. 4. Traditional sequence models encode
the input information into a fixed-length vector. In a DNN
computation graph, there are usually thousands of operations
and it is difficult for the model to compress all the necessary
information into a fixed-length vector. In contrast, the attention
mechanism encodes the input sentence into a sequence of
vectors and chooses a subset of these vectors adaptively while
decoding, thus the model can make better use of the input
information of the encoder. Our model can be divided into
two parts: encoder and decoder. The details are as follows.

Our encoder is a bidirectional RNN and the input of the
encoder is the sequence of operations of the input graph, which
is in topological order. We hope that our model can learn
not only each operation’s output but also input information,
so we use bidirectional RNN as the encoder. We embed the
operations by concatenating their information (including three

attributes: type, output shape and adjacency information). The
type of an operation describes its underlying computation. We
choose operations’ types at the code level, such as Conv2D
and MaxPool, and store a tunable embedding vector for each
type. We also collect the size of each operation’s list of
output tensors and change them into a fixed-size zero-padded
list called the output shape. We also construct the adjacency
information of the input graph as an one-hot encoding vector
that represents the operations that are direct inputs and outputs
to each operation. Finally, the input vector of each operation
is the concatenation of its type, output shape and adjacency
vector.

The decoder is an attentional LSTM with a fixed number of
time steps. The number of time steps is equal to that of input
operations in the DNN inference model. The decoder outputs
the GPU devices for the operation at the same encoder time
step and each GPU device has its own embedding vector. The
output of the decoder’s one time step is fed as input to the next
decoder time step because there are no correct labels in our
problem and the model should predict the device according to
the previous information.

V. PERFORMANCE EVALUATION

In this section, we evaluate the effectiveness of Au-
toDeep using the popular DNN inference models. Through
the experiments under real cloud environments, we illustrate
in a fine-grained manner how AutoDeep finds the cloud con-
figuration, and compare the quality of the device placements
of AutoDeep and non-trivial baselines. The highlights are:

o Under the same cloud configuration, AutoDeep improves the
device placement for RNNLM and Inception-V3 by 43%
and 14%, respectively.

« Given a fixed search time limit, AutoDeep finds the cloud
configuration satisfying the QoS constraint with 23% lower
inference cost for RNNLM and 51% for Inception-V3.

TABLE III
CONFIGURATION DETAILS.

CPU GPU GPU Price
Number (USD/hour/GPU)
Core 17-5930K GTX 980Ti 1-3 0.56
Core 17-6850K GTX 1080 1-4 0.70
Xeon E5-2690 v4 P100 1-4 2.07
Xeon E5-2690 v3 K80 1-4 0.90
54.0
g Il AutoDeep
= 3.51 B Expert Designed
] = Single GPU
€ 3.0
5 [Google-RL
2251
220, o
T
B 1.5
et L
g 1.01
£ 0.5
Y
£ 0.0 .
RNNLM InceptionV3

Fig. 5. The performance of device placement on four K80 GPUs.

« AutoDeep saves 33% and 57% search time on RNNLM and
Inception-V3, respectively.

A. Testbed Experiment

Setup: We deploy AutoDeep in Microsoft Azure cluster
and our local testbed. There are 15 cloud configurations
including NVIDIA K80, NVIDIA P100, NVIDIA GTX 1080
and NVIDIA 980Ti. The detailed configurations and their price
are listed in Table III.

Workloads: To test the performance of AutoDeep, we use
two popular DNN models in computer vision and natural lan-
guage processing. Fig. 1 and Fig. 2 illustrate the computation
graphs of the two DNN models.

o Recurrent Neural Network Language Model (RNNLM) has
multiple LSTM layers [18]. Since the architecture is grid-
based, this model has great potential to be executed in par-
allel on multiple devices. The LSTM cells can be executed
as soon as their dependent outputs become available.

o Inception-V3 [19] is one of the most popular DNN models
for image classification and visual feature extraction. Note
that the model is connected by multiple blocks. Each block
consists of multiple branches of convolution layers and
pooling layers. Thus, within each block, the operations on
different branches can be computed in parallel. However,
the barrier at the end of each block limits the potential for
exploiting higher parallelism.

B. Heuristic Baselines

To compare the performance of AutoDeep, we further im-
plement several heuristic baselines in our experiments. Since
AutoDeep is the first algorithm that jointly optimizes the
cloud configuration and the device placement, we choose the
baselines only achieving one of the two objectives.

For the cloud configuration searching, we choose the fol-
lowing baselines:

o Lowest Cost First (LCF): LCF follows the greedy strategy
and tries the cloud configurations in the ascending order of
their unit price. Since our goal is to find the configuration
that satisfies the QoS constraint with the minimum inference
cost, it stops searching until the QoS constraint is satisfied.

o Uniform: Uniform tries the cloud configurations with the
uniform probability and stops until the search time exceed-
ing a time limit.

Note that knowing inference cost of a cloud configuration (i.e.,

inference time X configuration unit price) requires revealing the

inference performance, which is expensive and prior unknown.

Thus LCF uses the unit price instead of inference cost when

deciding the searching priority.

For the device placement, we choose the following base-
lines:

o Expert Designed: We use the hand-crafted placements
given by Mirhoseini et al. [15]. For Inception-V3, the model
is heuristically partitioned into the parts with almost the
same number of layers. For RNNLM, we put each LSTM
layer on a GPU device.

« Google’s RL-based Device Placement (Google-RL): The
reinforcement learning-based approach proposed by Google
that only considers the device placement under a fixed cloud
configuration [15]. Different from our approach, Google-RL
uses an unidirectional RNN in their encoder.

« Single-GPU: This placement executes the entire DNN
model on a single GPU. We only place the operation to
CPU when it has no GPU implementation.

C. Experiment Results

Performance of Device Placement. To evaluate the per-
formance of the device placement, we first fix the cloud
configuration to the server with four NVIDIA K80 GPUs. Fig.
5 demonstrates the performance of AutoDeep and the three
baselines. The results are normalized to the inference time of
the device placement derived by AutoDeep.

AutoDeep improves the inference time of the RNNLM
and Inception-V3 model by 43% and 14% compared with
heuristic baselines, respectively. It may be surprising that
the expert-designed device placement has worse performance
than that in the single-GPU configuration. The reason is
that a human expert has no knowledge of the underlying
GPU configuration when deciding the placement. Thus the
human-designed device placement may not be suitable for the
cloud configuration. Actually, the bad performance of human-
designed device placement in our experiments is consistent
with previous observations on DNN training jobs reported

5 4.0
L35, Bl AutoDeep
30 [LCF

= 1 Uniform
S 2.5

2.0
S 1.5/
(O]
© 1.0
(O]
0.5/

£0.0"

_ NN

1 1.3 1.5

Fig. 6. Inference cost of RNNLM under varying QoS constraint.

b
U

=@ ' AutoDeep (QoS violated)
== AutoDeep (QoS satisfied)
LCF (QoS violated)
LCF (QoS satisfied)
= & Uniform (QoS violated)
=e== Uniform (QoS satisfied)

»
o

w
i

251 o

t (Normalized)

D -

o 2.0 5

(@] % RS

) 1.51 ™ o

o 1)

C 1.09

Q

@ 0.57

y—_

Lo | . . | |
0 2 4 6 8 10 12

Search cost (# of measurements)

Fig. 7. Inference cost of RNNLM with varying number of measurements.

by Mirhoseini et al. [15]. Google-RL does not find much
better device placement plan than using a single GPU. For
RNNLM, Google-RL places all operations onto a single GPU.
For Inception-V3, although Google-RL finds the placement on
four GPUs, however, it has little improvement on the inference
time than using one GPU.

As AutoDeep’s device placement outperforms all the base-
lines, we use the DRL-based algorithm to find the device
placement in the rest of the paper.

Performance of Cloud Configuration Searching. To eval-
uate the searching efficiency of AutoDeep, we set the search
time limit to 6 trials and compare the inference cost of the
cloud configuration found by the three algorithms. Fig. 6 and
Fig. 8 depict the (normalized) inference cost of the two DNN
models while increasing the QoS constraint from 1x to 1.5
of the original QoS constraint. AutoDeep achieves the best
performance in both models. For RNNLM, AutoDeep reduces
the inference cost by 23% compared to LCF. For Inception-
V3, LCF does not find any feasible cloud configuration, and
AutoDeep reduces 51% inference cost compared to Uniform.

525
I Bl AutoDeep
EZ.O- ‘I’ 1 LCF
S 1 Uniform
Z 1.5¢
.
[72]
S1.0] —F-
(O]
c
o 0.5
Q
£ 0.0 , , ,
1 1.3 1.5

Fig. 8. Inference cost of Inception-V3 under varying QoS constraint.

=® ' AutoDeep (QoS violated)

> »
%

O =@= AutoDeep (QoS satisfied)
3.5 LCF (QosS violated)
’ LCF (QosS satisfied)

.04 ™ *® ' Uniform (QoS violated)
==s== Uniform (QoS satisfied)

cost (Normalized)
-

ence
o &
p

©
il

Infer
o
o

2 4 6 8 10 12
Search cost (# of measurements)

o

Fig. 9. Inference cost of Inception-V3 with varying number of measurements.

With more relaxed QoS constraints, all three algorithms
find cloud configurations with lower inference cost, and Au-
toDeep finds the most efficient one in all settings.

Dissecting the Search Efficiency. @ To understand why
AutoDeep is more efficient on configuration searching, we
dissect how the inference cost changes with more measure-
ments. Fig. 7 and Fig. 9 demonstrate the change of inference
cost (normalized to the best configuration) of RNNLM and
Inception-V3, respectively. We set the QoS constraint to 1.5
and 2x of the inference time of the best configuration for
RNNLM and Inception-V3, respectively. The dash lines show
the inference cost before the algorithms find the cloud config-
uration satisfying the QoS constraint.

For RNNLM, AutoDeep finds the feasible configuration that
satisfies the QoS constraint at the 2nd trial, and the optimal
configuration at the 6-th trial. Both Uniform and LCF find the
best configuration at the 9-th trial, while Uniform finds the fea-
sible configuration at the 4-th trial with a very high inference
cost. Similarly, for Inception-V3, both AutoDeep and LCF find
the feasible configuration at the 3rd trial but AutoDeep finds

the optimal configuration. Since Inception-V3 performs much
better on the P100 GPUs, which are more expensive than the
other configurations, LCF performs the worst as it finds the
feasible (and the optimal) configuration at its 8-th trial.

VI. RELATED WORK

Our work integrates cloud configuration searching with
DNN acceleration. AutoDeep determines the cloud configura-
tion using Bayesian Optimization and accelerate DNN using
graph partition based on the technique of DRL. We review
related literature in this section.

Cloud Configuration. Choosing the right cloud configura-
tion for DNN inference is essential to the quality of service
and commercial competitiveness [30]. Early work such as
[31] develops a platform called CloudAdvisor to explore
various cloud configurations which are recommended based on
user preferences. CherryPick is a system designed in [14] to
choose the best cloud configurations for big data analytics.
These methods are for big data applications but they ignore
the characteristics of DNN inference for the deployment of
real-time DNN-driven services, in a sense that even in a fixed
configuration there exist different device placements with dif-
ferent inference speeds. Our approach can find both the cost-
efficient configuration and its appropriate device placement
satisfying the QoS constraint.

Parameter Tuning with Bayesian Optimization. Bayesian
Optimization is one of the promising techniques used for
parameter tuning. It has been used in searching optimal DNN
hyperparameters for higher accuracy [26], [32], and finding
the best cloud configuration for big-data analytics [14], [33].
These works usually use BO to optimize the objective function
without considering any constraint. AutoDeep is a parallel
work which jointly optimizes the cloud configuration and the
device placement. Moreover, AutoDeep not only minimizes
the inference cost but also considers the QoS constraint when
optimizing the DNN inference model.

DNN Acceleration. Performing inference on DNN models
meets the requirement of low-latency in practice [15], [16],
[34]-[36]. Existing works such as Picchini et al. [34] use
an Approximate Bayesian Computation MCMC algorithm to
accelerate Bayesian inference. Recent works such as Gao et
al. [35] use cellular batching to accelerate RNN inference, but
their approach can only be applied on cellular-like networks
like RNN. As for the acceleration of CNN, Abdelouahab et
al. [36] survey several methods to accelerate CNN inference
on FPGAs, such as batch parallelism, inter-layer parallelism
and so on. Mirhoseini et al. [15] and Gao et al. [16] propose
to use the DRL to optimize the device placement for DNN
training. Our work applies this technique to accelerate DNN
inference and combines it with BO to compute the cost-
efficient cloud configuration.

Conventional Graph Partition. Graph partition has been
intensively studied in various domains, such as sensor net-
works [37]. Existing works [22], [38]-[41] start from an initial
partition and use several refinement methods to explore similar

partitions to improve after iterations. Other works such as [23],
[42] perform spectral analysis on the matrix representation of
the graph and also employ an iterative refinement approach
to partition them. However, for DNN computation graphs,
these approaches do not work well because it is hard to
construct cost models for the graphs under all kinds of cloud
configurations.

VII. CONCLUSION AND FUTURE WORK
A. Conclusion

In this paper, we study the problem of automating the cloud
deployment for online real-time DNN inference. We propose a
novel algorithm AutoDeep that can adaptively choose the cost-
efficient cloud configuration and the device placement for the
DNN inference jobs. We implement AutoDeep with Tensor-
Flow and conduct extensive experiments on Microsoft Azure.
The experiments with two popular DNN inference models
show that AutoDeep can significantly improve the inference
speed (with better device placement), the search speed, and
reduce the cost of inference compared with the non-trivial
baselines, including Google’s RL based method for device
placement and Lowest Cost First for cloud configuration.

In this work, we only optimize the problem for online
real-time DNN inference. Training a DNN takes long time
that usually lasts for hours or even days. We believe it is
a promising future direction to jointly optimize the cloud
configuration and the device placement for DNN training jobs,
where the trade-off between search time and training time is
very critical.

B. Future Work

As this work has shown, the proposed AutoDeep, which
combines BO and DRL, focuses on optimizing the cloud
deployment of online DNN services, while BO and DRL are
heavy-weight learning methods that require a large number of
trials to generate accurate predictions, which may lead to a
high searching cost.

To improve the search efficiency, the first promising direc-
tion is to improve their learning efficiency, e.g., developing a
general network architecture so that re-training is not needed
for new DNN inference models [43]. The other interesting
direction is to optimize the system efficiency. We observe
that each time the device placement is changed in the DRL
sampling, the initialization of a DNN job (including obtaining
the hardware information, building the computation graph, and
CUDA initialization) takes a long time. Over 90% of searching
time is wasted to initialize the computation graph. Allowing
placing operations in a fine-grained manner (i.e., without
restarting a job) could speedup the searching significantly.

ACKNOWLEDGMENT

This work is supported in part by the National Key R&D
Program of China under grant 2018 YFB 1004700, the National
Natural Science Foundation of China (NSFC) under grants
61822205, 61632013, 61632020 and 61772489, and the Bei-
jing National Research Center for Information Science and
Technology (BNRist).

[1]

[2]
[3]

[4]

[6]

[7]
[8]

[9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

REFERENCES

A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet Classification
with Deep Convolutional Neural Networks,” in Proc. of NIPS, 2012,
pp- 1097-1105.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” in Proc. of IEEE CVPR, 2016, pp. 770-778.

G. Hinton, L. Deng, D. Yu, G. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, T. Sainath et al., “Deep Neural Networks for
Acoustic Modeling in Speech Recognition: The Shared Views of Four
Research Groups,” IEEE Signal Processing Magazine, vol. 29, no. 6,
pp. 82-97, 2012.

A. Graves and N. Jaitly, “Towards End-to-end Speech Recognition with
Recurrent Neural Networks,” in Proc. of ICML, 2014, pp. 1764-1772.
A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen,
R. Prenger, S. Satheesh, S. Sengupta, A. Coates et al., “Deep
Speech: Scaling up End-to-end Speech Recognition,” arXiv preprint
arXiv:1412.5567, 2014.

W. Chan, N. Jaitly, Q. Le, and O. Vinyals, “Listen, Attend and Spell: A
Neural Network for Large Vocabulary Conversational Speech Recogni-
tion,” in Proc. of IEEE ICASSP, 2016, pp. 4960—4964.

I. Sutskever, O. Vinyals, and Q. Le, “Sequence to Sequence Learning
with Neural Networks,” in Proc. of NIPS, 2014, pp. 3104-3112.

K. Cho, B. Van Merriénboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning Phrase Representations Us-
ing RNN Encoder-decoder for Statistical Machine Translation,” arXiv
preprint arXiv:1406.1078, 2014.

D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Transla-
tion by Jointly Learning to Align and Translate,” arXiv preprint
arXiv:1409.0473, 2014.

Y. Wu, M. Schuster, Z. Chen, Q. Le, M. Norouzi, W. Macherey,
M. Krikun, Y. Cao, Q. Gao, K. Macherey et al., “Google’s Neural
Machine Translation System: Bridging the Gap between Human and
Machine Translation,” arXiv preprint arXiv:1609.08144, 2016.

D. Wang, W. Cao, J. Li, and J. Ye, “DeepSD: Supply-demand Prediction
for Online Car-hailing Services Using Deep Neural Networks,” in Proc.
of IEEE ICDE, 2017, pp. 243-254.

Q. Ye, Z. Zhang, and R. Law, “Sentiment Classification of Online
Reviews to Travel Destinations by Supervised Machine Learning Ap-
proaches,” Expert Systems with Applications, vol. 36, no. 3, pp. 6527—
6535, 2009.

A. Gujarati, S. Elnikety, Y. He, K. McKinley, and B. Brandenburg,
“Swayam: Distributed Autoscaling to Meet SLAs of Machine Learning
Inference Services With Resource Efficiency,” in Proc. of ACM Middle-
ware, 2017, pp. 109-120.

O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, and
M. Zhang, “CherryPick: Adaptively Unearthing the Best Cloud Con-
figurations for Big Data Analytics,” in Proc. of USENIX NSDI, vol. 2,
2017, pp. 4-2.

A. Mirhoseini, H. Pham, Q. V. Le, B. Steiner, R. Larsen, Y. Zhou, N. Ku-
mar, M. Norouzi, S. Bengio, and J. Dean, “Device Placement Optimiza-
tion with Reinforcement Learning,” arXiv preprint arXiv:1706.04972,
2017.

Y. Gao, L. Chen, and B. Li, “Spotlight: Optimizing Device Placement
for Training Deep Neural Networks,” in Proc. of ICML, 2018, pp. 1662—
1670.

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A System for
Large-scale Machine Learning,” in Proc. of USENIX OSDI, vol. 16,
2016, pp. 265-283.

S. Hochreiter and J. Schmidhuber, “Long Short-term Memory,” Neural
Computation, vol. 9, no. 8, pp. 1735-1780, 1997.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the Inception Architecture for Computer Vision,” in Proc. of IEEE
CVPR, 2016, pp. 2818-2826.

W. Xiao, R. Bhardwaj, R. Ramjee, M. Sivathanu, N. Kwatra, Z. Han,
P. Patel, X. Peng, H. Zhao, Q. Zhang et al., “Gandiva: Introspective

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

(36]

[37]

[38]

[39]
[40]

[41]

[42]

[43]

Cluster Scheduling for Deep Learning,” in Proc. of USENIX OSDI, 2018,
pp- 595-610.

K. Ousterhout, C. Canel, S. Ratnasamy, and S. Shenker, “Monotasks:
Architecting for Performance Clarity in Data Analytics Frameworks,” in

Proc. of ACM SOSP, 2017, pp. 184-200.
F. Pellegrini, “Distillating Knowledge about Scotch,” in Dagstuhl Sem-

inar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik,
2009.

G. Karypis and V. Kumar, “METIS-Unstructured Graph Partitioning and
Sparse Matrix Ordering System, Version 2.0,” 1995.

I. Bello, H. Pham, Q. Le, M. Norouzi, and S. Bengio, “Neural
combinatorial optimization with reinforcement learning,” arXiv preprint
arXiv:1611.09940, 2016.

M. Pelikan, D. Goldberg, and E. Cantd-Paz, “BOA: The Bayesian
Optimization Algorithm,” in Proc. of GECCO, 1999, pp. 525-532.

J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian Opti-
mization of Machine Learning Algorithms,” in Proc. of NIPS, 2012, pp.
2951-2959.

D. Jones, M. Schonlau, and W. Welch, “Efficient Global Optimization
of Expensive Black-box Functions,” Journal of Global Optimization,
vol. 13, no. 4, pp. 455-492, 1998.

D. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
arXiv preprint arXiv:1412.6980, 2014.

R. Williams, “Simple Statistical Gradient-following Algorithms for
Connectionist Reinforcement Learning,” Machine Learning, vol. 8, no.
3-4, pp. 229-256, 1992.

Z. Li, Y. Zhang, and Y. Liu, “Towards A Full-Stack DevOps Envi-
ronment (Platform-As-A-Service) for Cloud-Hosted Applications,” Ts-
inghua Science and Technology, vol. 22, no. 01, pp. 1-9, 2017.

G. Jung, T. Mukherjee, S. Kunde, H. Kim, N. Sharma, and F. Goetz,
“Cloudadvisor: A Recommendation-as-a-service Platform for Cloud
Configuration and Pricing,” in Proc. of IEEE SERVICES, 2013, pp. 456—
463.

J. Bergstra, D. Yamins, and D. Cox, “Hyperopt: A Python Library for
Optimizing the Hyperparameters of Machine Learning Algorithms,” in
Proc. of Citeseer SciPy, 2013, pp. 13-20.

C.-J. Hsu, V. Nair, V. Freeh, and T. Menzies, “Low-Level Augmented
Bayesian Optimization for Finding the Best Cloud VM,” arXiv preprint
arXiv:1712.10081, 2017.

U. Picchini and J. Forman, “Accelerating Inference for Diffusions
Observed with Measurement Error and Large Sample Sizes Using Ap-
proximate Bayesian Computation,” Journal of Statistical Computation
and Simulation, vol. 86, no. 1, pp. 195-213, 2016.

P. Gao, L. Yu, Y. Wu, and J. Li, “Low Latency RNN Inference with
Cellular Batching,” in Proc. of ACM EuroSys. ACM, 2018, p. 31.

K. Abdelouahab, M. Pelcat, J. Serot, and F. Berry, “Accelerating CNN
Inference on FPGAs: A Survey,” arXiv preprint arXiv:1806.01683, 2018.
L. Wang, Z. Yu, D. Yang, T. Ku, B. Guo, and H. Ma, “Collaborative
Mobile Crowdsensing in Opportunistic D2D Networks: A Graph-based
Approach,” ACM Transactions on Sensor Networks (TOSN), vol. 15,
no. 3, p. 30, 2019.

B. W. Kernighan and S. Lin, “An Efficient Heuristic Procedure for
Partitioning Graphs,” The Bell System Technical Journal, vol. 49, no. 2,
pp. 291-307, 1970.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
Simulated Annealing,” Science, vol. 220, no. 4598, pp. 671-680, 1983.
C. Fiduccia and R. Mattheyses, “A Linear-time Heuristic for Improving
Network Partitions,” pp. 175-181, 1982.

D. Johnson, C. Aragon, L. McGeoch, and C. Schevon, “Optimization
by Simulated Annealing: An Experimental Evaluation; Part I, Graph
Partitioning,” Operations Research, vol. 37, no. 6, pp. 865-892, 1989.

L. Hagen and A. Kahng, “New Spectral Methods for Ratio Cut Partition-
ing and Clustering,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), vol. 11, no. 9, pp. 1074-1085,
1992.

R. Addanki, S. B. Venkatakrishnan, S. Gupta, H. Mao, and M. Alizadeh,
“Placeto: Efficient Progressive Device Placement Optimization,” in Proc.
of NIPS Machine Learning for Systems Workshop, 2018.

